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Abstract

This research developed a machine-learning classifier that reliably automates the coding process using the
National Taxonomy of Exempt Entities as a schema and remapped the U.S. nonprofit sector. I achieved
90% overall accuracy for classifying the nonprofits into nine broad categories and 88% for classifying
them into 25 major groups. The intercoder reliabilities between algorithms and human coders measured
by kappa statistics are in the “almost perfect” range of 0.80–1.00. The results suggest that a state-of-the-
art machine-learning algorithm can approximate human coders and substantially improve researchers’
productivity. I also reassigned multiple category codes to over 439 thousand nonprofits and discovered a
considerable amount of organizational activities that were previously ignored. The classifier is an essential
methodological prerequisite for large-N and Big Data analyses, and the remapped U.S. nonprofit sector
can serve as an important instrument for asking or reexamining fundamental questions of nonprofit studies.
The working directory with all data sets, source codes, and historical versions are available on GitHub
(https://github.com/ma-ji/npo classifier).
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1 Introduction

Voluntary and philanthropic organizations have existed for centuries, but the term “nonprofit sec-
tor” was just coined in the 1970s by scholars and policy makers (Hall 2006). A major reason for
assembling diverse organizations into a conceptual whole was to legitimize their existence and
the benefits they received (54-55). As Barman (2013) pointed out, the order and structure of a so-
ciety can be reflected by a classification system from Durkheim’s perspective (Durkheim 2012).
The National Taxonomy of Exempt Entities (NTEE) developed by the National Center for Char-
itable Statistics (NCCS) is the most widely used classification system and represents one of the
efforts put forth to legitimize the existence of the nonprofit sector (Hodgkinson and Toppe 1991;
Hodgkinson 1990). Since its creation, NTEE has been widely used in classifying nonprofits in
the U.S. and as a benchmark for developing new classification systems. Methodologically, schol-
ars also use NTEE as a coding schema to operationalize their primary constructs.

This research developed a machine-learning classifier that reliably automates the coding process
using NTEE and remapped the U.S. nonprofit sector by reassigning multiple NTEE codes to or-
ganizations with purposes across various domains. The classifier is an essential methodological
prerequisite for large-N and Big Data analyses, and the remapped U.S. nonprofit sector can serve
as an important instrument for asking or reexamining fundamental questions of nonprofit studies.
The working directory with all datasets, source codes, and historical versions are deposited on
GitHub (https://github.com/ma-ji/npo classifier). Although the progress made in this single study
may not entirely solve all the challenges of NTEE, and this preliminary project can only serve as
a stimulus for future studies, it provides an essential knowledge base and novel directions.

1.1 A short history of the NTEE classification system

In an effort to become legitimate, the development of the NTEE classification system dates from
the 1980s (Hodgkinson 1990, 8-9, 11). In 1982, the NCCS assembled a team of experts who
worked on creating a taxonomy for nonprofit organizations. The first draft of the NTEE schema
came out in 1986 and was published in 1987. By the early 1990s, the NCCS had classified nearly
one million nonprofits by using the NTEE. Then in 1995, the Internal Revenue Service (IRS)
adopted the NTEE coding system, took over assigning and maintaining the classification, and
started releasing the Business Master File with NTEE codes (US Internal Revenue Service 2014,
2013).

Two agencies were responsible for assigning these NTEE codes: the NCCS and the IRS. Before
1995, the NCCS coded nonprofits according to their program descriptions in Parts III and VIII of
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Form 990, which were supplemented with information from Form 1023 (“Application for Recog-
nition of Exemption”) and additional research (National Center for Charitable Statistics 2006,
16). After 1995, the IRS began to issue “new exempt organizations an NTEE code as part of the
determination process,” and “the determination specialist [assigned] an NTEE code to each orga-
nization exempt under I.R.C. §501(a) as part of the process of closing a case when the organiza-
tion [was] recognized as tax-exempt” (US Internal Revenue Service 2013, 1).

The NTEE classification system has supported many applied and academic studies on nonprofit
organizations which have critical economic and political roles in society. For example, the NTEE
provides a framework through which the social and economic activities of civil society can be
mapped and compared with other social sectors (e.g., Roeger, Blackwood, and Pettijohn 2015).
Scholars can use NTEE codes to sample nonprofits of interest (e.g., Okten and Weisbrod 2000;
Sharkey, Torrats-Espinosa, and Takyar 2017; McVeigh 2006; Vasi et al. 2015) or as independent
variables (Sloan 2009). The NTEE can also serve as an analytical tool to measure organizational
capacity in different service domains and inform practitioners and policy makers (Hodgkinson
and Toppe 1991). Moreover, scholars also use NTEE as a coding schema to operationalize their
primary constructs (e.g., McVeigh 2006; Denison 2009; Bhati and McDonnell 2020)

1.2 Worst classification, except for all the others: Five problems of NTEE

The NTEE classification system, despite being one of the best we have so far, still has numerous
critical drawbacks. First, because the NTEE only assigns one major category code to an organi-
zation, it cannot accurately describe a nonprofit’s programs that are usually diverse and spread
across several service domains (i.e., the multi-code problem; Grønbjerg 1994, 303). Even though
a program classification system was later developed (Lampkin, Romeo, and Finnin 2001), it is
still not widely used, probably because it is impractical to assign codes to a massive number of
programs.

Second, the assignment of NTEE codes is not complete because it is “based on an assessment
of program descriptions contained in Parts 3 and 8 of the Form 990” and “program descriptions
were only available for some organizations” (i.e., the incomplete information problem; National
Center for Charitable Statistics 2006, 16). A recent study found the number of organizations in
Washington state with a specific NTEE code would increase significantly if mission statements
were used for coding (Fyall, Moore, and Gugerty 2018).

Third, NTEE codes are static, whereas nonprofit organizations’ activities may change over time
(i.e., the changing-code problem). Recoding existing NTEE assignments is extremely onerous,
and this may be one of the reasons that the IRS does not have a procedure through which non-
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profits can request a change to their NTEE codes (US Internal Revenue Service 2013). The tremen-
dous amount of human labor needed for classification is a prominent challenge and an obvious
barrier to improving any classification system. This issue leads to the fourth onerous labor prob-

lem.

Fifth, a vast amount of grassroots organizations are not classified and remain missing in existing
datasets because an organization “that normally has annual gross receipts of $50,000 or less” is
not required to report to the IRS (i.e., the missing-nonprofit problem; US Internal Revenue Ser-
vice 2019). As Smith (1997) estimates, the IRS listings ignore about 90% of nonprofits, most of
which are grassroots associations. By surveying the communities in Indiana, Grønbjerg, Liu, and
Pollak (2010, 931) found that about 40% of all the nonprofits in the state were not registered with
the IRS. The nonprofits’ activities at the grassroots level are particularly important, but many
studies failed to consider these organizations because of the dataset limitation (e.g., McVeigh
2006; Vasi et al. 2015; Sharkey, Torrats-Espinosa, and Takyar 2017).

Numerous studies have experimented with computational methods in automating the coding pro-
cess in research (e.g., Salminen et al. 2019; Baćak and Kennedy 2018; Nelson et al. 2018; Fyall,
Moore, and Gugerty 2018; Anastasopoulos and Whitford 2019; Hollibaugh 2018), but many of
these studies are introductory guides with showcases and are not solving a real-world research
question. Bearing the five drawbacks in mind, I applied the advances in computational linguistics
and contributed to the growing literature from these aspects: 1) I established a standardized work-
flow and benchmarks that future studies of nonprofits or typologies in other social science dis-
ciplines can build on and make comparisons to; 2) I achieved 90% overall accuracy for classify-
ing the nonprofits into nine broad categories and 88% for classifying them into 25 major groups,
and the intercoder reliabilities between algorithms and human coders measured by kappa statis-
tics are in the “almost perfect” range of 0.80–1.00 (Landis and Koch 1977, 165); and 3) I solved
the multi-code problem and remapped the U.S. nonprofit sector, which can serve as an important
instrument for asking or reexamining fundamental questions of nonprofit studies. Ultimately, I
developed a classifier that reliably automates the coding process using NTEE as a schema—an
essential methodological prerequisite for large-N and Big Data analyses.

2 Method

Classifying nonprofits using their text descriptions is a typical task in automatic content analysis
and usually employs three types of methods: the dictionary, supervised, and unsupervised meth-
ods (Grimmer and Stewart 2013, 268-269). The dictionary method uses a predefined dictionary
of words to classify the texts. The automated classification method developed by the NCCS in
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2007 belongs to this rule-based dictionary approach (The Nonprofit Center 2008). Two recent
nonprofit classification studies also primarily adopted this approach (Fyall, Moore, and Gugerty
2018; Litofcenko, Karner, and Maier 2020). Although accurate and easy to implement, the dictio-
nary approach cannot deal with the variations in and contexts of language. For example, “Hearts
of Stone” is classified as “Housing Development, Construction, Management” because it matches
the keyword “stone”.1 The supervised method is an improved solution that uses computer algo-
rithms to learn the linguistic patterns in a dataset classified by human coders. Unlike the dictio-
nary and supervised methods, which require predefined categories of interest, the unsupervised
method can discover linguistic patterns in texts without inputting any knowledge of classification.
However, the unsupervised method’s validity can be problematic because the returned classifica-
tions may not be theoretically and practically meaningful. To take advantage of existing human-
coded NTEE classifications and literature, this study employs a supervised approach as Figure 1
illustrates.

Figure 1 presents this paper’s complete workflow. The ultimate goal of automated text classifi-
cation is to devise a classifier that can replace robust human-coding. I implemented four stages
of analysis to achieve this task: 1) the preprocessing stage included data acquisition and the pre-
processing of datasets and texts2; 2) feature extraction included a bag-of-words representation
(used by naı̈ve Bayes and random forest algorithms) and word embedding (used by neural net-
work algorithms); 3) the training and decision-making phase, was where I used stochastic and
grid searches to train, search, and optimize the machine-learning algorithms; and 4) the last phase
involved training the model finalist with the complete dataset and preparing the trained model for
public use. Although the rest of this section introduces the four phases, this short article’s focus is
not to introduce detailed computational concepts and algorithms since they have been discussed
in textbooks and aforementioned journal articles. Instead, I focus on how to apply these methods
within nonprofit studies context.

2.1 Data preprocessing

Data acquisition and dataset preprocessing. I collected text records from Forms 990, 990-EZ,
and 990-PF and supplemented these records with program descriptions from Schedule O. Form
990 (“Return of Organization Exempt From Income Tax”) is submitted by most nonprofit organi-
zations. Smaller organizations with “gross receipts of less than $200,000 and total assets of less
than $500,000 at the end of their tax year” (US Internal Revenue Service 2018, 1) can file Form

1Thank Dr. Mark Hager for this example.
2Although the classifier is developed using the texts from tax forms, it can also be used to classify other text

documents.
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Figure 1: RESEARCH WORKFLOW

3. Training and Decision Making

Grid Search
- Satisficing decision table
- Optimizing decision table

Text Preprocessing
- Tokenizing / stop words
- Check spelling

2. Word Representation 
and Feature Extraction

Bag-of-Words
- Stemming / Lemmatizing
- Word Count
- TF-IDF

Pre-trained Language Representation
- Word embedding: GloVe 6B, 100 dimensions
- Transformer: BERT base uncased

Stochastic Search
- Hyperparameters for
hidden layers

4. Training Model Finalist
- Train with 100% df_ucf_train
- Test on 100% df_ucf_test

1. Data Preprocessing

Data Acquisition
- IRS 990 forms on AWS
- NCCS BMF files

Dataset Preprocessing
- Confidence A
- Link datasets

Naive Bayes / Random Forest Neural Network / BERT

Universal Classification Files
- df_ucf_train
- df_ucf_test

Imbalanced Dataset Resample
- ADASYN / RandomOverSampler / SMOTE
- SMOTEENN / SMOTETomek

990-EZ (“Short Form Return of Organization Exempt From Income Tax”), which is a shorter ver-
sion of Form 990. Private foundations use Form 990-PF (“Return of Private Foundation”). The
texts describe organizational activities in two forms: the overall mission statement and specific
program descriptions. Table 1 summarizes these text fields’ specific locations on the different
forms.
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Table 1: LOCATIONS OF TEXT FIELDS IN DIFFERENT FORMS

Mission Statement Program Description
990 Part I, Line 1; Part III, Line 1 Part III, Line 4; Part VIII,

Lines 2a-e, Lines 11a-c;
Schedule O

990-EZ Part III Part III, Lines 28-30; Schedule
O

990-PF – Part IX-A; Part XVI-B

Table 2: NTEE-CC CLASSIFICATION SYSTEM

Broad Category Code Explanation Major Group Code
I Arts, Culture, and Humani-

ties
A

II Education B
III Environment and Animals C, D
IV Health E, F, G, H
V Human Services I, J, K, L, M, N, O, P

VI International, Foreign Af-
fairs

Q

VII Public, Societal Benefit R, S, T, U, V, W
VIII Religion Related X

IX Mutual/Membership Benefit Y
X Unknown, Unclassified Z

Classification records (i.e., NTEE codes) were collected from the 2014–2016 Business Master
Files on the NCCS website.3 This study deals with two types of NTEE classifications: 10 broad
categories and 26 major groups. Table 2 shows the relationship between the broad categories and
major groups. A detailed list of the 26 major groups can be found through the IRS (2014).

The accuracy of a classification is indicated by the letters of A, B, and C, where a “confidence
level of A ... indicates that there is at least a 90 percent probability that the major group clas-
sification is correct” (National Center for Charitable Statistics 2006, 16). From 2014 to 2016,
56.12% of records were classified at level A, 37.32% at level B, and 6.56% at level C. Records
vary in confidence levels primarily because of information availability and clarity (The Nonprofit
Center 2008). For example, a large amount of nonprofits have no mission statement and program
description reported, so the NTEE codes for these organizations are assigned solely based on
their names.

3https://nccs-data.urban.org
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Only A-level records4 are used for developing the algorithm. I made this decision because of
three reasons. First, for training purposes, the training dataset needs to be of higher quality that
includes typical features from which the algorithm can learn. Second, the intercoder reliability of
records at confidence level A should approximate 100% (Stengel, Lampkin, and Stevenson 1998,
147). This measure is particularly important because the NTEE codes were assigned by human
coders from different organizations (i.e., the IRS and NCCS) over different periods of time, and
we need to assure that the reliability of the assigned codes are high. Third, about 1.76% of or-
ganizations changed their NTEE codes between 2014 and 2016. I excluded the records of these
organizations because their category codes probably misrepresent their ongoing activities if they
have not requested timely updates of their NTEE codes.

Selecting only A-level records does not undermine the reliability of the trained algorithm, but it
has an important implication for future applications: When using our classifier, scholars should
preprocess their text data to increase the quality before analysis. This is an essential step for any
analysis.

Text Preprocessing. Texts in sentences need to be segmented into words before analysis, which
is called “tokenization” in natural language processing. For example, “we focus on education”
needs to be tokenized into a list of words (i.e., “we,” “focus,” “on,” “education”). I also removed
stop words (e.g., “the,” “a,” “on,” and punctuation marks) and checked spelling errors using al-
gorithms based on “minimum edit distance” (i.e., the minimum number of editing operations
needed to change one word into another; Jurafsky and Martin 2019, 23).

Universal Classification Files (UCFs). The final step in the data preprocessing stage is to divide
data records into training and testing datasets (i.e., files in /dataset/UCF/) that are mutually ex-
clusive and can be used to benchmark future models (Figure 2). The Universal Classification File

Training (UCF-Training; df ucf train.pkl.gz) is used to develop models and comprises 80%
of the total records. For developing models, the UCT-Training is also split into two mutually ex-
clusive parts: training and testing subsets for developing algorithms. The Universal Classification

File Testing (UCF-Testing; df ucf test.pkl.gz) is used to test a trained model’s performance
and comprises 20% of the total records. All records in UCF files are valid for training and testing
purposes (i.e., all records have mission statement and program description information).

Table 3 presents the two datasets’ composition by major groups. The UCFs approximate the
composition of organizations reported to the IRS, except for groups A (“arts, culture, and human-
ities,” more data) and T (“philanthropy, voluntarism, and grantmaking foundations,” less data).
The consequence is that the final algorithm’s performance on A is more reliable because it was

4At this level, no records are in the X/Z category (i.e., unknown or unclassified).
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Figure 2: STRUCTURE OF THE UNIVERSAL CLASSIFICATION FILES

Universal Classification Files

Training dataset (80%)

Testing dataset (20%)
Dev-Training Dev-Testing

trained with more data. However, the performance on category T is less reliable. So researchers
using T organizations should be more cautious.

2.2 Word representation and feature extraction

After the data acquisition and preprocessing, we need to transform the tokenized sentences into
numeric vectors used by the machine-learning algorithms. A variety of transformation methods
can represent words as vectors, and good methods should be able to ease the process of extracting
features from texts. In general, there are two approaches to word representation: bag-of-words
and word embedding.

2.2.1 Bag-of-words approach

The bag-of-words approach considers words in texts as being mutually independent and thus dis-
regards the order of the words. For example, “we are health service organization” and “health
organization service are we” are the same from a bag-of-words perspective. This method serves
as the basis for developing many simple language models because it can efficiently represent the
possibility of a word’s occurrence in texts (Bengfort, Bilbro, and Ojeda 2018). I adopted two
methods in this study to represent the texts: count vector and term frequency-inverse document
frequency.

Count vector counts the number of occurrences of all the words in a given text. Given a set of
statements, the algorithm first builds an index of all unique words from the collection that is
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Table 3: COMPOSITION OF UNIVERSAL CLASSIFICATION FILES

Major Group Training (#) Training (%) Testing (#) Testing (%) Reported (#) Reported (%)
A 17,010 11.02% 4,291 11.11% 35,813 6.77%
B 25,827 16.72% 6,419 16.63% 67,879 12.83%
C 3,323 2.15% 827 2.14% 9,054 1.71%
D 4,239 2.75% 1,034 2.68% 8,740 1.65%
E 9,015 5.84% 2,307 5.98% 25,643 4.85%
F 2,301 1.49% 543 1.41% 8,481 1.60%
G 5,053 3.27% 1,353 3.50% 10,697 2.02%
H 467 0.30% 126 0.33% 2,203 0.42%
I 2,947 1.91% 740 1.92% 8,687 1.64%
J 4,772 3.09% 1,132 2.93% 15,841 2.99%
K 2,009 1.30% 522 1.35% 7,444 1.41%
L 5,942 3.85% 1,537 3.98% 20,428 3.86%
M 4,693 3.04% 1,140 2.95% 10,857 2.05%
N 15,460 10.01% 3,925 10.17% 43,987 8.31%
O 1,731 1.12% 409 1.06% 7,878 1.49%
P 9,180 5.94% 2,318 6.00% 40,880 7.73%
Q 1,987 1.29% 436 1.13% 7,288 1.38%
R 1,064 0.69% 257 0.67% 2,830 0.53%
S 14,459 9.36% 3,603 9.33% 48,387 9.14%
T 2,032 1.32% 541 1.40% 84,338 15.94%
U 1,000 0.65% 225 0.58% 3,039 0.57%
V 350 0.23% 85 0.22% 940 0.18%
W 8,357 5.41% 2,038 5.28% 20,862 3.94%
X 4,566 2.96% 1,098 2.84% 20,699 3.91%
Y 6,640 4.30% 1,701 4.41% 15,712 2.97%
Z – – – – 547 0.10%

Total 154,424 100.00% 38,607 100.00% 529,154 100.00%

Note: Numbers and percentages reported to the Internal Revenue Service (i.e., the last two columns) are from
McKeever, Dietz, and Fyffe (2016). Dashed lines separate the 10 broad categories.
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Table 4: EXAMPLE OF COUNT VECTORS

statement × vocabu-
lary

we focus on education health care about

we focus on education 1 1 1 1 0 0 0
health care care 0 0 0 0 1 2 0
we care about 1 0 0 0 0 1 1

called the vocabulary index. The algorithm then represent the texts using word frequencies and
the vocabulary index. Table 4 presents a simple example of count vectors in which the statement
“we focus on education” is represented as the vector [1,1,1,1,0,0,0].

Term frequency-inverse document frequency (TF-IDF) normalizes raw word frequencies using
the number of documents in which a given word appears. As Eq. 1 presents, t fi j is the frequency
of word i in mission statement j, weighted by the inverse document frequency (i.e., id fi; Eq. 2),
where Ntotal is the number of total mission statements and Ni is the number of mission statements
in which word i appears. The underlying assumption of TF-IDF is that any words appearing in all
the statements are not as important as those occurring in a limited number of statements (Jurafsky
and Martin 2019, 105).

wi j = t fi j · id fi (1)

id fi = log(
Ntotal

Ni ) (2)

We need to normalize the texts to reduce the vocabulary size before transforming them by us-
ing either count vector or TF-IDF because the same word can have numerous spelling variations.
For example, “environments,” “environmental,” and “environment” represent the same root word
(i.e., stem) “environ.” Otherwise, the machine-learning models will suffer from “the curse of di-
mensionality”: as the feature increases, the data become more discrete and less informative to
decision making (Bellman 2015, 94).

The process of normalizing words is called “morphological parsing,” which includes two primary
methods: stemming and lemmatizing (Jurafsky and Martin 2019, 21). Stemming (i.e., “Porter
Stemmer” in this study) slices longer strings into smaller ones according to a series of predefined
rules. For example, “ational” is transformed to “ate” in all words ending with “ational.” There-
fore, stemming tends to have both over- and under-parsing errors. Lemmatizing (i.e., lemmatizer
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Figure 3: WORD EMBEDDING EXAMPLES

education

health
care

environment
water

scholarship

protect
student

climate

change

resource

insurance
hospital

based on WordNet in this study; Miller 1995) is a more advanced method that reduces a word to
its stem with the help of part of speech tagging.

2.2.2 Pre-trained language representation approach

Disregarding the contexts in which the words appear is an evident flaw of the bag-of-words ap-
proach. Therefore, vectorizing words using a large text corpus (e.g., the entire English Wikipedia
corpus) has become the basis for many state-of-the-art algorithms of natural language under-
standing. The word embedding approach is a new advancement (Mikolov et al. 2013) and was
suggested by Nelson et al. (2018, 28) as a future direction for sociological studies, but it only has
been applied by a few social scientists very recently (Kozlowski, Taddy, and Evans 2019). As
Figure 3 illustrates, this method represents words in a multidimensional space (i.e., each word has
a vector value), and words that often appear together in the text corpus are closer to each other
(Jurafsky and Martin 2019, 99; Bengfort, Bilbro, and Ojeda 2018, 65). We can either train our
own word vectors, which would require a large corpus and is time-consuming, or use pretrained
word vectors. In this study, I used the 100-dimension word vectors pretrained from a corpus of 6
billion word tokens (Pennington, Socher, and Manning 2014). For the word embedding approach,
we do not need to normalize the texts using stemming or lemmatizing because the dataset of pre-
trained word vectors contains all spelling variations, and the variations of the same word are close
to each other in the multidimensional vector space.
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Although this word embedding method can consider semantic contexts, it only gives fixed vec-
tor values to words; therefore, this method cannot handle the variations of context between tasks.
The Bidirectional Encoder Representations from Transformers (BERT) is a newest solution to
this issue (Devlin et al. 2019). The BERT model is first pre-trained using an unlabeled (i.e., un-
supervised) corpus to have pre-trained parameters, and these parameters can be fine-tuned using
the labeled corpus from downstream tasks. Simply put, the BERT model uses unlabeled large
text corpus to obtain a range of values for different parameters, and then uses a specific task (i.e.,
classifying nonprofits in this paper) to fine-tune and get more accurate values.

2.3 Training and decision making

2.3.1 Imbalanced dataset resampling

Training using an imbalanced dataset such as UCF-Training can bias our prediction of minor
classes because machine-learning algorithms cannot extract enough information from these classes
(e.g., groups H and V). Therefore, resampling the imbalanced dataset to build a more balanced
one is crucial for predicting minority classes. I experimented with three strategies of over-sampling
(i.e., ADASYN, RandomOverSampler, and SMOTE) and two strategies of over-sampling fol-
lowed by under-sampling to reduce the noise (i.e., SMOTEENN and SMOTETomek; Lemaı̂tre,
Nogueira, and Aridas 2017). The influence of resampling is substantial: the F1 score for predict-
ing minority class major group Q was improved from 15% to over 30% in our pilot experiments.5

2.3.2 Classifiers for training

One principle of text analysis is that “there is no globally best method” (Grimmer and Stew-
art 2013, 270). For different tasks, it is important to test the performance of different families
of classifiers. I experimented the typical models of four families: Naı̈ve Bayes model based on
probability theory, Random Forest model based on decision tree, convolutional neural network
model based on deep neural network, and linear regression model. Because linear regression is
familiar to most of the academic community, this section briefly introduces the first three models.

The naı̈ve Bayes (NB) classifier is built on Bayes’ theorem. It is one of the simplest classifiers to
learn and implement among all machine-learning algorithms and is built on simple conditional
probability principles. The classifier assumes all features extracted from the texts are condition-
ally independent, which is wrong in most cases. But the classifier is efficient and has proven to be
useful for a variety of tasks even on a small dataset (Jurafsky and Martin 2019, 58; Grimmer and

5Although major group Q and broad category VI represent the same group of organizations, for computer algo-
rithms, the classification contexts are different; therefore, performance on this category varies.
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Stewart 2013, 277). I tested two types of NB classifiers: the multinomial and complement NB
classifiers (Rennie et al. 2003).

The random forest (RF) classifier is implemented by developing multiple prediction models.
Each model in this algorithm is trained by different data, and then all of these models are asked to
make a prediction for the same record. A prediction class that is selected by most of these small
algorithms is given as the prediction result by the RF algorithm. It uses the word “forest” because
each small algorithm trained is a decision tree (Quinlan 1986, 83). A decision tree represents a
set of questions that usually have yes/no answers. The process starts from the top of the tree (i.e.,
root node) with one question, and based on the answer, we run down either side of the tree and
answer another question. We can repeat this process until reaching the end of the tree. Each deci-
sion tree is trained on a different training set (Breiman 1996, 124).

Neural network (NN) classification mimics the neural structures in human brains. Figure 4 il-
lustrates the architecture of the final neural network for predicting broad categories. As the fig-
ure shows, each “neuron” (or node) is a simple classification function (e.g., a sigmoid or recti-
fied linear unit function). We can arrange these neurons to form three types of layers (i.e., input,
hidden, and output), and therefore, they can perform more complicated classification tasks. The
connection between neurons has a numerical value called “weight.” In the training stage, each
neuron processes one record in a turn and learns by looking at the record’s classification (i.e., the
NTEE code) and comparing it with the known previous records. With every new record the neu-
rons learn, they update the connection weight to update the model (Collobert and Weston 2008,
163). After the network is done processing each record in the training set, it has final weights for
each connection between two neurons. When a testing set is provided, the neurons use the final
weights to predict the NTEE code. Depending on the architecture of the neurons, we can design a
variety of NNs (e.g., the basic fully connected, recurrent, or long short-term memory). This study
uses convolutional NN (CNN) following scholars’ recommendation (Zhang and Wallace 2015).

The classifiers use different approaches to vectorize words: the NB and RF classifiers use the
bag-of-word approach, the NN classifier employs the word embedding approach, and the BERT
classifier is a pre-trained BERT embedding (i.e., not fine-tuned bare BERT embedding) with a
layer of linear regression nodes on top.

2.3.3 Measuring algorithm performance

An algorithm’s performance can be measured by many metrics, but social scientists are particu-
larly concerned with three questions when solving real-word problems: 1) How many predicted
observations are correct (i.e., precision calculated by Eq. 3)? 2) How many observations are cor-
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rectly predicted (i.e., recall calculated by Eq. 4)? 3) How reliably can algorithms replace human
coders (i.e., intercoder reliability)? Answering these three questions is critical for social scientists
who apply machine-learning research methods. Moreover, instead of using terms that are only
familiar to computer scientists, I introduce these measures with the NTEE classification contexts.

In Eq. 3, k is one of the NTEE codes, #Orgpred
k is the number of organizations predicted as k (i.e.,

the sum of true positive and false positive), and #Orgcorr
k is the number of correct predictions

(i.e., true positive). #Orgcorr
k will always be smaller than or equal to #Orgpred

k because machine-
learning algorithms can hardly predict every observation correctly. For example, PrecisionB =

0.75 indicates that 75% of all the organizations classified as “education” are correct.

Precisionk =
Orgcorr

k

Orgpred
k

(3)

In Eq. 4, Orghuman
k is the number of organizations that belong to k category robustly coded by a

human (i.e., the sum of true positive and false negative). For example, RecallB = 0.80 denotes
that 80% of the organizations classified as “education” by robust human coding are correctly
identified by the algorithm.

Recallk =
Orgcorr

k

Orghuman
k

(4)

The precision and recall are competitive; that is, the increase of one measure will sacrifice the
other. Therefore, the F1 score (Eq. 5), the harmonic mean of precision and recall, was introduced
to balance the two measures.

F1k =
2 ·Precisionk ·Recallk
Precisionk +Recallk

(5)

We can also calculate the intercoder reliability between an ML algorithm and a human coder
since our ultimate goal is to use the former to replace the latter. The kappa-type statistics are a
widely used measure of intercoder reliability, and Landis and Koch (1977, 165) provided the fol-
lowing interpretation: less than 0, poor; 0.00–0.20, slight; 0.21–0.40, fair; 0.41–0.60, moderate;
0.61–0.80, substantial; 0.81–1.00, almost perfect. Simundic et al. (2009) used these statistics to
compare human coders and automated methods in biomedicine and achieved scores at the “mod-
erate” range. However, the interpretations of the kappa measure is suggestive. Whether the value
is sufficient also depends on the research question (Viera and Garrett 2005).
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2.3.4 Decision making

The goal of this study is to find the best machine-learning algorithm from an extensive collection
of parameters. We can either try some of the configurations randomly (i.e., stochastic search) or
iterate all possible configurations (i.e., grid search). For the NB and RF algorithms, I used the
latter approach. For the NN algorithms, I first used a stochastic search to narrow the configura-
tions of hidden layers and then conducted a grid search for the input and output layers’ param-
eters using a CNN. The grid search for all possible parameters (over 2 million combinations) is
impossible even when using one of the most advanced supercomputing clusters in the world.

I conducted two rounds of grid searches. The first round was for satisficing decision making in
which I only considered the configurations that can perform at the top 5% (240 parameter combi-
nations for NB and RF and 7,200 for NN, detailed history files are in the output/ folder). Then
I ran the second found grid search for optimizing decision making in which I increased the values
of some parameters to allow the algorithms to reach their performance ceilings. I then chose the
best algorithm and parameters for final training.

3 Results

3.1 Selecting the model with best performance

For the multiclass classification task (i.e., more than two classes to predict), it is difficult to mea-
sure the overall performance because the performance differs for each category. Table 5 presents
the performance of the CNN classifiers with and without resampling. Because the dataset is im-
balanced, the classifier performs poorly on category VI (“international, foreign affairs”) without
resampling. Training the classifier with a resampled dataset substantially improved the F1 score
from 14% to 29% but slightly sacrifices its performance on other categories. So which one should
we choose?

I chose the classifier trained without resampling as the best model because even though the F1

score for category VI was substantially improved, we could not use the predicted results for this
category (21% identified of which only 44% are correct). I recommend not sacrificing the perfor-
mance on other categories since researchers need to manually check or completely drop this cat-
egory in their analysis anyway. For social scientists, mathematical improvements may not yield
substantial and practical meanings. This rationale applies to selecting other classifiers.
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Table 5: COMPARING CONVOLUTIONAL NEURAL NETWORK CLASSIFIERS

Code Precision-N Precision-R Recall-N Recall-R F1-N F1-R %Obs.
I 87% 83% 85% 87% 86% 85% 11%

II 85% 91% 88% 78% 86% 84% 17%
III 76% 83% 90% 82% 82% 82% 5%
IV 76% 88% 87% 70% 81% 78% 11%
V 85% 77% 86% 90% 85% 83% 30%

VI 59% 44% 8% 21% 14% 29% 1%
VII 88% 83% 76% 79% 81% 81% 17%

VIII 65% 71% 77% 70% 71% 71% 3%
IX 90% 80% 85% 92% 88% 85% 4%

Note: N = No resampling; R = Resampling.

3.2 Performance of the best model

After experimenting four classifiers with extensive parameters, the fine-tuned BERT classifier
has the best performance: For classifying the nine broad categories, 90% of records in the UCF-
Testing dataset were correctly recognized, and the intercoder reliability kappa measure is 0.88;
for the 25 major-group task, 88% were correctly classified, and their kappa measure is 0.87. Both
kappa statistics are in the “almost perfect” range (i.e., between 0.80 and 1.00; Landis and Koch
1977, 165). The values of precision, recall, and F1 for each category and group varies, as pre-
sented in Tables 6 and 7.6

Our BERT classier outperformed human coders on many broad categories (i.e., I, III, V, VII, and
IX; five out of nine) and major groups (i.e., A, D, G, H, J, K, M, N, R, S, T, V, W, and Y; 14 out of
25). For example, the classifier outperformed human coders on broad category VII (“public, soci-
etal benefit”): 88% of the category VII organizations were identified, and among these identified
organizations, 90% were correct—14% higher than the human coders’ performance. For major
group W (“public, society benefit - multipurpose and other”), 94% of the group W organizations
were identified, and among these identified organizations, 92% were correct—34% higher than
human coders. A caveat is, Stengel, Lampkin, and Stevenson (1998) did the verification 20 years
ago. The data quality at that time was probably inferior to what it is now. However, the algorithm
in this study is trained and tested using high-quality records (i.e., A-level records). Therefore, it
may not be surprising that the algorithm outperforms human coders.

All the predicted results are generally satisfactory, except for the major group V (“social science
research institutes”). This group had the poorest performance: only 48% of the group V organi-

6Tables A1 and A2 in the appendix have more measures of performance. These measures are not widely em-
ployed by the machine learning community but presented here to compare with results from elsewhere.
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Table 6: PERFORMANCE OF BEST MODEL ON

BROAD CATEGORY

NTEE HP NB CNN BERT
I 88 82-86-84 87-85-86 92-92-92

II 93 84-82-83 85-88-86 91-91-91
III 87 77-86-81 76-90-82 90-92-91
IV 92 76-81-78 76-87-81 90-88-89
V 86 83-81-82 85-86-85 90-92-91

VI 77 25-76-38 59-8-14 67-68-68
VII 76 83-73-78 88-76-81 90-88-89

VIII 87 73-55-63 65-77-71 82-84-83
IX 90 86-83-84 90-85-88 91-94-92

Notes: Numbers show percentages (Precision-Recall-
F1). NTEE = National Taxonomy of Exempt Entities;
HP = Human coder precision, compiled from Stengel,
Lampkin, and Stevenson (1998, 153); NB = Naı̈ve
Bayes; CNN = Convolutional Neural Network; BERT
= Bidirectional Encoder Representations from Trans-
formers.

zations were identified, and among these identified organizations, only 59% were correct. Even
though the precision is 35% higher than a human coder’s precision, the predicted values cannot
directly be used in analysis. Researchers should be cautious if their research questions are related
to “social science research institutes.” The low human and algorithmic precision may also sug-
gest that the construct validity of this major group is questionable, which can be a direction for
future studies.

3.3 Remapping the U.S. nonprofit sector

I solved the multi-code problem and remapped the U.S. nonprofit sector using the trained classi-
fier. For each organization, the classifier returns a raw score for each NTEE code. The raw scores
(i.e., in machine learning terms, “logits”) are between (−∞,+∞), but we can normalize them to
probabilities (i.e., values between [0,1]) using either a softmax or sigmoid function. The softmax
function treats all categories as mutually exclusive, and the sum probability of all NTEE codes
is equal to 1. While the sigmoid function treats all classifications as independent, and the sum
probability is not constrained to 1. Therefore, the sigmoid transformation can help us solve the
multi-code problem.

I validated the predicted results by manually checking a sample of 200 observations (i.e., con-
fidence interval 95%± 7%). Among the 200 records, 10.5% of them have incomplete informa-
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Table 7: PERFORMANCE OF BEST MODEL ON

MAJOR GROUP

NTEE HP NB CNN BERT
A 88 87-82-84 80-87-83 93-92-92
B 93 85-78-81 85-85-85 92-91-91
C 86 62-77-69 65-74-69 82-86-84
D 90 87-89-88 80-90-85 92-94-93
E 92 77-69-73 77-78-78 87-85-86
F 86 59-55-57 51-60-55 77-77-77
G 65 65-56-60 68-68-68 83-86-84
H 73 33-56-41 55-19-28 81-63-71
I 84 63-64-63 71-71-71 84-85-85
J 72 71-77-74 86-67-75 86-81-84

K 82 68-67-67 63-68-66 84-84-84
L 83 68-71-70 70-76-73 83-84-83

M 88 81-84-82 87-90-88 93-94-93
N 88 87-86-87 83-93-88 94-95-94
O 91 58-52-55 65-61-63 83-84-84
P 88 56-62-59 64-57-60 75-78-76
Q 77 47-53-50 43-36-39 67-67-67
R 67 39-56-46 46-21-28 74-69-72
S 75 75-77-76 84-79-81 90-88-89
T 78 43-47-45 66-32-43 83-67-74
U 76 27-46-34 52-22-31 67-78-72
V 24 0-0-0 0-0-0 59-48-53
W 58 87-80-84 87-86-86 92-94-93
X 87 63-74-68 68-71-70 81-85-83
Y 90 82-88-85 84-91-88 91-94-92
Z 10 –

Notes: Numbers show percentages (Precision-Recall-
F1). NTEE = National Taxonomy of Exempt Entities;
HP = Human coder precision, compiled from Sten-
gel, Lampkin, and Stevenson (1998, 153); NB =
Naı̈ve Bayes; CNN = Convolutional Neural Network;
BERT = Bidirectional Encoder Representations from
Transformers. Dashed lines separate the ten broad
categories.
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tion.7 For the remaining records, the accuracy of IRS-reported NTEE is 87.71%. For the pre-
dicted NTEE codes, I split the results into three groups: high (normalized probability ≥ .99),
medium (≥ .95), and low (≥ .90). Manual validation revealed that the accuracy for these cate-
gories is 91.94%, 83.33%, and 62.82%, respectively. The cumulative accuracy is 89.39% (i.e.,
high + medium) and 83.33% (i.e., high + medium + low). I decided to combine the results from
the high and medium categories because it can provide more classification labels and outperform
the accuracy of IRS-reported NTEE.

Figure 5 illustrates the remapped U.S. nonprofit sector in comparison to the original classifica-
tions registered with IRS, and an online interactive visualization can be accessed at https://jima.
me/?ntee remap. Disparities are many, but the most substantial change is the reduced percent-
age of T (“philanthropy, voluntarism, and grantmaking foundations”). The NCCS assigned T to
all private foundations without examining their purposes. This wild approach assumed that these
foundations “[make] grants to unrelated organizations or institutions or to individuals” (National
Center for Charitable Statistics 2007, 13). This coding criterion can be useful to avoid “double-
counting” (Hodgkinson 1990, 17), but many of these private foundations clearly specified their
service areas and could be operational foundations (i.e., not distributing grants to other nonprof-
its). Therefore, the current T category registered with IRS is significantly inflated and cannot re-
flect the actual activities because it is assigned by institutional type but not organizational pur-
poses. The remapped U.S. nonprofit sector can provide a more accurate description and serve as
an important instrument for asking or reexamining fundamental questions of nonprofit studies.

3.4 Python package for classifying texts

I developed a Python package (npoclass, under folder npo classifier/API) for classifying
texts using NTEE codes, and scholars can use it free of charge. Although the package was devel-
oped using the texts from tax forms, researchers can also use it to classify other text documents,
for example, program and fundraising descriptions, news articles, and automated scraped web-
sites. But like all analytical tasks, the raw text data need to be carefully preprocessed, as I have
introduced in the method section. The package’s documentation has more instructions.

4 Discussion

I developed a classifier that can reliably automate the coding process using NTEE as a schema—
an essential methodological prerequisite for large-N and Big Data analyses. I achieved 90% over-

7A record is treated as “incomplete” if its organization name, mission statement, and program description cannot
provide meaningful information for inferring the NTEE code.
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Figure 5: REMAPPING THE U.S. NONPROFIT SECTOR
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all accuracy for classifying the nonprofits into nine broad categories according to their text de-
scriptions, and 88% for classifying them into 25 major groups (both excluding the category of
“unknown”). The intercoder reliabilities between algorithms and human coders (i.e., NTEE val-
ues coded by humans in NCCS Business Master Files) measured by kappa statistics are in the
“almost perfect” range (i.e., between 0.80 and 1.00; Landis and Koch 1977, 165). I solved the
multi-code problem and remapped the U.S. nonprofit sector by reassigning multiple NTEE codes
to organizations with purposes across various domains. In general, an encouraging takeaway of
this study is that machine-learning algorithms can approximate human coders and substantially
improve a researcher’s productivity, and the remapped U.S. nonprofit sector can serve as an im-
portant instrument for asking or reexamining fundamental questions of nonprofit studies.

4.1 On the way to conquering the five problems

This paper may not conquer all the problems of NTEE introduced earlier, but it provides an es-
sential knowledge base and novel directions for future studies. The classifier alone is not a suffi-
cient solution, but it is a powerful tool to make all the problems solvable.

Although the primary challenge, the multi-code problem, is solved directly, the remapping may
cause double-counting if scholars use multiple NTEE codes in their research because one organi-
zation is counted in different categories. However, the double-counting issue is not specific to the
devised classifier, but to all multi-label classification systems. Depending on research question,
this issue may bias estimation.

For the incomplete information problem, first, I used more available information in our classifi-
cation (Table 1) than existing studies that only used titles, mission statements, and program de-
scriptions in Part III of the 990 forms. Second, for the organizations that only have limited infor-
mation on the 990 forms or do not file tax forms at all (e.g., unincorporated grassroots voluntary
groups), we can generate information from elsewhere. For example, one of our ongoing projects
has retrieved the names, descriptions, and comments of thousands of grassroots organizations and
groups through Google Map API. We then classified these information using the devised classier
and had a more holistic picture of the nonprofit sector in a certain metropolitan area. This solu-
tion also applies to the missing-nonprofit problem.

An important takeaway from this project is that, even though information scarcity is not the most
severe issue now, the ability to process information is much more challenging. The changing-

code and onerous labor problems also result from a lack of information processing ability. This
paper enables us to tackle these challenges with confidence. Although preliminary, it established
a benchmark for future work.
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4.2 Practical suggestions to social scientists solving real-world problems

The performance results in this paper indicate that social scientists who want to apply computa-
tional methods in their research should be cautiously confident. The key notion supporting our
confidence here is a robust validation because too many factors can influence the validity of the
algorithm (Grimmer and Stewart 2013, 271). For example, the algorithm may perform poorly
on a dataset that is structurally different from the training dataset. I strongly suggest that read-
ers review the annotations in the scripts posted online to understand the caveats and then make
necessary optimizations according to their own research questions.

Social scientists should also take advantage of high-performance computing (HPC) research in-
frastructures (e.g., Keahey et al. 2018). These machine-learning algorithms can achieve their best
performance only when trained with a large amount of data, and such a training process con-
sumes a huge amount of computing power that is far beyond the capacity of the most advanced
personal computers. At the grid search phase of this study, I used two of the most advanced GPU
accelerators (NVIDIA Tesla P100) for NN training and six 48-CPU computing servers for NB
and RF training. The HPC infrastructures are widely used in natural sciences but are still new to
social scientists. Methodology workshops should incorporate the introduction of HPC infrastruc-
tures into their syllabi.

Applications of this study are broad. For example, computational social scientists can apply the
workflow presented in this paper to other domains of inquiry. Other than academic purposes,
practitioners can also use our study for industrial purposes. For example, classifying program
descriptions and matching volunteering interests. Future studies can make numerous improve-
ments based on the workflow and benchmark introduced in this paper. First, studies on this topic
can experiment with more classifiers and parameters, for example, applying a more accurate
nonprofit-specific glossary and stemmer (Paxton, Velasco, and Ressler 2019). Second, I deposited
the working directory with all datasets, source codes, and historical versions on GitHub, enabling
future large-scale collaborations on this project. A competition event on this subject is also being
prepared.8 Third, the Python software package can be improved with the inputs from scholars.
Last but not least, we are advancing a multilingual version of this project using the International
Classification of Nonprofit Organizations (Salamon and Anheier 1992) to assist the study of non-
profits in non-English-speaking countries. This step is essential for studying global civil society
(Vakil 1997; Salamon and Anheir 1996).

8https://jima.me/?npo-classifier-competition
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A Appendix: Tables

Table A1: MORE PERFORMANCE MEASURES OF THE BEST MODEL:
BROAD CATEGORIES

Specificity Geometric Mean Index Balanced Accuracy
I 99.03% 95.30% 90.15%

II 98.31% 94.50% 88.63%
III 99.47% 95.41% 90.30%
IV 98.74% 93.47% 86.46%
V 95.72% 93.72% 87.49%

VI 99.62% 82.52% 65.96%
VII 98.03% 93.00% 85.64%

VIII 99.45% 91.14% 81.73%
IX 99.57% 96.50% 92.57%

Average 97.76% 93.87% 87.49%
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Table A2: MORE PERFORMANCE MEASURES OF THE BEST MODEL:
MAJOR GROUPS

Specificity Geometric Mean Index Balanced Accuracy
A 99.08% 95.42% 90.39%
B 98.39% 94.60% 88.83%
C 99.59% 92.53% 84.46%
D 99.78% 96.80% 93.15%
E 99.19% 91.66% 82.79%
F 99.67% 87.70% 75.18%
G 99.37% 92.30% 84.04%
H 99.95% 79.16% 60.33%
I 99.69% 92.12% 83.63%
J 99.62% 89.73% 79.01%

K 99.78% 91.81% 83.01%
L 99.31% 91.08% 81.66%

M 99.77% 96.99% 93.56%
N 99.31% 97.07% 93.81%
O 99.82% 91.36% 82.12%
P 98.34% 87.36% 74.74%
Q 99.63% 81.96% 65.02%
R 99.84% 83.16% 67.03%
S 98.94% 93.43% 86.36%
T 99.80% 81.94% 64.96%
U 99.78% 88.09% 75.90%
V 99.92% 69.43% 45.71%
W 99.54% 96.51% 92.59%
X 99.42% 91.67% 82.78%
Y 99.56% 96.77% 93.13%

Average 99.15% 93.30% 86.26%

31


	Introduction
	A short history of the NTEE classification system
	Worst classification, except for all the others: Five problems of NTEE

	Method
	Data preprocessing
	Word representation and feature extraction
	Training and decision making

	Results
	Selecting the model with best performance
	Performance of the best model
	Remapping the U.S. nonprofit sector
	Python package for classifying texts

	Discussion
	On the way to conquering the five problems
	Practical suggestions to social scientists solving real-world problems

	Appendix: Tables

